翻訳と辞書
Words near each other
・ Subdermal implant
・ Subdesert brush warbler
・ Subdesert mesite
・ Subdesert toad
・ Subdialect
・ Subdigitals
・ Subdirect product
・ Subdirectly irreducible algebra
・ Subdischidesia
・ Subdistrict
・ Subdistricts of Bengkulu
・ Subdistricts of East Timor
・ Subdistricts of the People's Republic of China
・ Subdistricts of Yogyakarta (special region)
・ Subdivided flat
Subdivided interval categories
・ Subdivision
・ Subdivision (country subdivision)
・ Subdivision (film)
・ Subdivision (land)
・ Subdivision 1A, Newfoundland and Labrador
・ Subdivision 1B, Newfoundland and Labrador
・ Subdivision 1C, Newfoundland and Labrador
・ Subdivision 1D, Newfoundland and Labrador
・ Subdivision 1E, Newfoundland and Labrador
・ Subdivision 1F, Newfoundland and Labrador
・ Subdivision 1G, Newfoundland and Labrador
・ Subdivision 1H, Newfoundland and Labrador
・ Subdivision 1I, Newfoundland and Labrador
・ Subdivision 1J, Newfoundland and Labrador


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Subdivided interval categories : ウィキペディア英語版
Subdivided interval categories
In category theory (mathematics) there exists an important collection of categories denoted () for natural numbers n\in\mathbb. The objects of () are the integers 0,1,2,\ldots,n, and the morphism set Hom(i,j) for objects i,j\in() is empty if j and consists of a single element if i\leq j .
Subdivided interval categories are very useful in defining simplicial sets. The category whose objects are the subdivided interval categories and whose morphisms are functors is often written \Delta and is called the simplicial indexing category. A simplicial set is just a contravariant functor X:\Delta^\rightarrow Sets.
==Examples==

The category 𝟘 is an empty interval, that is, an empty category, having any objects or morphisms. It is an initial object in the category of all categories.
The category (), also denoted as 𝟙, is a one-object, one-morphism category. It is the terminal object in the category of all categories.
The category (), also denoted as 𝟚 has two objects and a single (non-identity) morphism between them. If \mathcal is any category, then \mathcal^ is the category of morphisms and commutative squares in \mathcal.
The category (), also denoted as 𝟛 has three objects and three non-identity morphisms.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Subdivided interval categories」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.